Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
Главная / Результаты поиска
СтатьяИскать документыПерейти к записи. 2023; № 3: 8–16. DOI:10.21518/ms2023-024
Участие иммунного ответа в патогенезе ишемического инсульта
Искать документыПерейти к записи[1,2]
Искать документыПерейти к записи[3,2]
Искать документыПерейти к записи[4,2,5,6]
Искать документыПерейти к записи[7]
Искать документыПерейти к записи[2]
Искать документыПерейти к записи[4,5,8]
Искать документыПерейти к записи[6]
Искать документыПерейти к записи[9]
Аффилированные организации
[1]Искать документыПерейти к записи
[3]Искать документыПерейти к записи
[4]Искать документыПерейти к записи
[7]Искать документыПерейти к записи
[2]Искать документыПерейти к записи
[5]Искать документыПерейти к записи
[8]Искать документыПерейти к записи
[6]Искать документыПерейти к записи
[9]Искать документыПерейти к записи
Аннотация
Острые нарушения мозгового кровообращения являются одной из ведущих проблем современной клинической медицины, что обусловлено их значительным распространением в человеческой популяции и крайне негативным влиянием, оказываемым на организм пациента. Имеющиеся в настоящее время данные позволяют говорить о многовекторном характере патогенеза ишемического повреждения головного мозга. В рамках каскада развивающихся патохимических и патофизиологических процессов существенная роль в формировании ишемического инсульта принадлежит воспалительной реакции, протекающей посредством ответа иммунной системы на ишемию мозговой ткани. Одним из мест его реализации является стенка сосуда, находящегося в зоне ишемии, где при помощи белков клеточной адгезии происходит привлечение моноцитов и нейтрофилов. Значительную роль играет активация комплемента, осуществляемая в основном за счет С3 компонента или при инициализации маннозного пути. Непосредственно в очаге ишемии огромная роль принадлежит активации микроглии и астроцитов. При этом необходимо отметить, что в процессе активации как микроглия, так и астроциты способны приобретать провоспалительный или противовоспалительный фенотип. Превалирование провоспалительного варианта способствует пролонгированному повреждению ткани головного мозга, в то время как преобладание противовоспалительного фенотипа оказывает протективный эффект. Большую роль играет нарушение функции гематоэнцефалического барьера, что обеспечивает дополнительный приток лейкоцитов к месту ишемии. Кроме того, отдельные субпопуляции Т-лимфоцитов, проникающие через поврежденный барьер, также имеют существенное значение в организации и динамике иммуновоспалительного ответа. Наиболее изучено действие Th1 и Th2 клеток, гамма-дельта Т-лимфоцитов, естественных клеток-киллеров, а также регуляторных Т-лимфоцитов. Рассматривается роль В-лимфоцитов в формировании очага инсульта.
Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Стародубцева О.С., Бегичева С.В. Анализ заболеваемости инсультом с использованием информационных технологий. Фундаментальные исследования. 2012;8(2):424-427. Режим доступа: https://fundamental-research.ru/ru/article/view?id=30383.https://fundamental-research.ru/ru/article/view?id=30383

Стародубцева О.С., Бегичева С.В. Анализ заболеваемости инсультом с использованием информационных технологий. Фундаментальные исследования. 2012;8(2):424-427. Режим доступа: https://fundamental-research.ru/ru/article/view?id=30383.https://fundamentaL-research.ru/ru/articLe/view?id=30383

Стаховская Л.В., Клочихина О.А., Богатырева М.Д., Коваленко В.В. Эпидемиология инсульта в России по результатам территориально-популяционного регистра (2009 2010). Журнал неврологии и психиатрии им. С.С. Корсакова. 2013;113(5):4-10. Режим доступа: https://www.mediasphera.ru/issues/zhumal-nevrologii-i-psikhiatrii-im-s-s-korsakova/2013/5/031997-7298201351.https://www.mediasphera.ru/issues/zhumal-nevrologii-i-psikhiatrii-im-s-s-korsakova/2013/5/031997-7298201351

Стаховская Л.В., Клочихина О.А., Богатырева М.Д., Коваленко В.В. Эпидемиология инсульта в России по результатам территориально-популяционного регистра (2009 2010). Журнал неврологии и психиатрии им. С.С. Корсакова. 2013;113(5):4-10. Режим доступа: https://www.mediasphera.ru/issues/zhumal-nevrologii-i-psikhiatrii-im-s-s-korsakova/2013/5/031997-7298201351.https://www.mediasphera.ru/issues/zhurnaL-nevroLogii-i-psikhiatrii-im-s-s-korsakova/2013/5/031997-7298201351

Пирадов М.А., Максимова М.Ю., Домашенко М.А. Инсульт: пошаговая инструкция. М.: ГЭОТАР-Медиа; 2019. 272 с. Режим доступа: https://www.labirint.ru/books/679266/.https://www.labirint.ru/books/679266/

Пирадов М.А., Максимова М.Ю., Домашенко М.А. Инсульт: пошаговая инструкция. М.: ГЭОТАР-Медиа; 2019. 272 с. Режим доступа: https://www.labirint.ru/books/679266/.https://www.Labirint.ru/books/679266/

Hall MJ., levant S., DeFrances CJ. Hospitalization for stroke in U.S. hospitals, 1989-2009. NCHS Data Brief. 2012;(95):1-8. Available at: https://www.cdc.gov/nchs/data/databriefs/db95.pdf.https://www.cdc.gov/nchs/data/databriefs/db95.pdf

Hall MJ., levant S., DeFrances CJ. Hospitalization for stroke in U.S. hospitals, 1989-2009. NCHS Data Brief. 2012;(95):1-8. Available at: https://www.cdc.gov/nchs/data/databriefs/db95.pdf.https://www.cdc.gov/nchs/data/databriefs/db95.pdf

Roger V.L., Go A.S., Lloyd-Jones D.M., Benjamin EJ., Berry J.D., Borden W.B. et al. Heart disease and stroke statistics-2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2-e220. https://doi.org/10.1161/CIR.0b013e31823ac046..
DOI: 10.1161/CIR.0b013e31823ac046

Tsivgoulis G., Psaltopoulou T., Wadley V.G., Alexandrov A.V., Howard G., Unverzagt F.W. et al. Adherence to a Mediterranean diet and prediction of incident stroke. Stroke. 2015;46(3):780-785. https://doi.org/10.1161/STROKEAHA.114.007894..
DOI: 10.1161/STROKEAHA.114.007894

Howard G., Goff D.C. Population shifts and the future of stroke: forecasts of the future burden of stroke. Ann N Y Acad Sci. 2012;1268:14-20. https://doi.org/10.1111/j.1749-6632.2012.06665.x..
DOI: 10.1111/j.1749-6632.2012.06665.x

Chamorro A., Meisel A., Planas A.M., Urra X., van de Beek D., Veltkamp R. The immunology of acute stroke. Nat Rev Neurol. 2012;8(7):401-410. https://doi.org/10.1038/nrneurol.2012.98..
DOI: 10.1038/nrneurol.2012.98

Chamorro A., Meisel A., Planas A.M., Urra X., van de Beek D., Veltkamp R. The immunology of acute stroke. Nat Rev Neurol. 2012;8(7):401-410. https://doi.org/10.1038/nrneurol.2012.98..
DOI: 10.1038/nrneuroL.2012.98

De Meyer S.F., Denorme F., langhauser F., Geuss E., Fluri F., Kleinschnitz C. Thromboinflammation in stroke brain damage. Stroke. 2016;47(4):1165-1172. https://doi.org/10.1161/STROKEAHA.115.011238..
DOI: 10.1161/STROKEAHA.115.011238

Delvaeye M., Conway E.M. Coagulation and innate immune responses: can we view them separately? Blood. 2009;114(12):2367-2374. https://doi.org/10.1182/blood-2009-05-199208..
DOI: 10.1182/blood-2009-05-199208

Delvaeye M., Conway E.M. Coagulation and innate immune responses: can we view them separately? Blood. 2009;114(12):2367-2374. https://doi.org/10.1182/blood-2009-05-199208..
DOI: 10.1182/bLood-2009-05-199208

Datsi A., Piotrowski L., Markou M., Koster T., Kohtz I., Lang K. et al. Stroke-derived neutrophils demonstrate higher formation potential and impaired resolution of CD66b + driven neutrophil extracellular traps. BMC Neurol. 2022;22(1):186. https://doi.org/10.1186/s12883-022-02707-0..
DOI: 10.1186/s12883-022-02707-0

Genchi A., Semerano A., Gullotta G.S., Strambo D., Schwarz G., Bergamaschi A. et al. Cerebral thrombi of cardioembolic etiology have an increased content of neutrophil extracellular traps. J Neurol Sci. 2021;423:117355. https://doi.org/10.1016/j.jns.2021.117355..
DOI: 10.1016/j.jns.2021.117355

Kim S.W., Lee J.K. Role of HMGB1 in the Interplay between NETosis and Thrombosis in Ischemic Stroke: A Review. Cells. 2020;9(8):1794. https://doi.org/10.3390/cells9081794..
DOI: 10.3390/cells9081794

Kim S.W., Lee J.K. Role of HMGB1 in the Interplay between NETosis and Thrombosis in Ischemic Stroke: A Review. Cells. 2020;9(8):1794. https://doi.org/10.3390/cells9081794..
DOI: 10.3390/ceLLs9081794

Mocco J., Mack WJ., Ducruet A.F., Sosunov S.A., Sughrue M.E., Hassid B.G. et al. Complement component C3 mediates inflammatory injury following focal cerebral ischemia. Circ Res. 2006;99(2):209-217. https://doi.org/10.1161/01.RES.0000232544.90675.42..
DOI: 10.1161/01.RES.0000232544.90675.42

Cervera A., Planas A.M., Justicia C., Urra X., Jensenius J.C., Torres F. et al. Genetically-defined deficiency of mannose-binding lectin is associated with protection after experimental stroke in mice and outcome in human stroke. PloS ONE. 2010;5(2):e8433. https://doi.org/10.1371/journal.pone.0008433..
DOI: 10.1371/journal.pone.0008433

Cervera A., Planas A.M., Justicia C., Urra X., Jensenius J.C., Torres F. et al. Genetically-defined deficiency of mannose-binding lectin is associated with protection after experimental stroke in mice and outcome in human stroke. PloS ONE. 2010;5(2):e8433. https://doi.org/10.1371/journal.pone.0008433..
DOI: 10.1371/journaL.pone.0008433

Anrather J., Iadecola C. Inflammation and Stroke: An Overview. Neurotherapeutics. 2016;13(4):661-670. https://doi.org/10.1007/s13311-016-0483-x..
DOI: 10.1007/s13311-016-0483-x

Tabet A., Apra C., Stranahan A.M., Anikeeva P. Changes in Brain Neuroimmunology Following Injury and Disease. Front Integr Neurosci. 2022;16:894500. https://doi.org/10.3389/fnint.2022.894500..
DOI: 10.3389/fnint.2022.894500

Gadani S.P., Walsh J.T., lukens J.R., Kipnis J. Dealing with danger in the CNS: the response of the immune system to injury. Neuron. 2015;87(1):47-62. https://doi.org/10.1016/j.neuron.2015.05.019..
DOI: 10.1016/j.neuron.2015.05.019

Kim E., Cho S. CNS and peripheral immunity in cerebral ischemia: partition and interaction. Exp Neurol. 2021;335:113508. https://doi.org/10.1016/j.expneurol.2020.113508..
DOI: 10.1016/j.expneurol.2020.113508

Kim E., Cho S. CNS and peripheral immunity in cerebral ischemia: partition and interaction. Exp Neurol. 2021;335:113508. https://doi.org/10.1016/j.expneurol.2020.113508..
DOI: 10.1016/j.expneuroL.2020.113508

Wang Q., Tang X.N., Yenari M.A. The inflammatory response in stroke. J Neuroimmunol. 2007;184(1-2):53-68. https://doi.org/10.1016/j.jneuroim.2006.11.014..
DOI: 10.1016/j.jneuroim.2006.11.014

Lehnardt S. Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia. 2010;58(3):253-263. https://doi.org/10.1002/glia.20928..
DOI: 10.1002/glia.20928

Zhao S.C., Ma L.S., Chu Z.H., Xu H., Wu W.Q., Liu F. Regulation of microglial activation in stroke. Acta Pharmacol Sin. 2017;38(4):445-458. https://doi.org/10.1038/aps.2016.162..
DOI: 10.1038/aps.2016.162

Frijns CJ, Kappelle LJ. Inflammatory cell adhesion molecules in ischemic cerebrovascular disease. Stroke. 2002;33(8):2115-2122. https://doi.org/10.1161/01.str.0000021902.33129.69..
DOI: 10.1161/01.str.0000021902.33129.69

Stuckey S.M., Ong L.K., Collins-Praino L.E., Turner RJ. Neuroinflammation as a Key Driver of Secondary Neurodegeneration Following Stroke? Int J Mol Sci. 2021;22(23):13101. https://doi.org/10.3390/ijms222313101..
DOI: 10.3390/ijms222313101

Gerhard A., Schwarz J., Myers R., Wise R., Banati R.B. Evolution of microglial activation in patients after ischemic stroke: A [11C](R)-PK11195 PET study. Neurolmage. 2005;24(2):591-595. https://doi.org/10.1016/j.neuroimage.2004.09.034..
DOI: 10.1016/j.neuroimage.2004.09.034

Мокров Г.В., Деева О.А., Яркова М.А., Гудашева Т.А., Середенин С.Б. Трансфокаторный белок TSPO 18 кДа и его лиганды: перспективный подход к созданию новых нейропсихотропных средств. Фармакокинетика и фармакодинамика. 2018;(4):3-27. https://doi.org/10.24411/2587-7836-2018-10026..
DOI: 10.24411/2587-7836-2018-10026

Selvaraj U.M., Stowe A.M. Long-term T cell responses in the brain after an ischemic stroke. DiscovMed. 2017;24(134):323-333. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893311/.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893311/

Selvaraj U.M., Stowe A.M. Long-term T cell responses in the brain after an ischemic stroke. DiscovMed. 2017;24(134):323-333. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893311/.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893311/

Черных Е.Р., Шевела Е.Я., Морозов С.А., Останин А.А. Иммунопатогенетические аспекты ишемического инсульта. Медицинская иммунология. 2018;20(1):19-34. Режим доступа: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893311/10.15789/1563-0625-2018-1-19-34.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893311/10.15789/1563-0625-2018-1-19-34

Черных Е.Р., Шевела Е.Я., Морозов С.А., Останин А.А. Иммунопатогенетические аспекты ишемического инсульта. Медицинская иммунология. 2018;20(1):19-34. Режим доступа: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893311/10.15789/1563-0625-2018-1-19-34.https://www.ncbi.nlm.nih.gov/pmc/articles/

Biswas S.K., Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11(10):889-896. https://doi.org/10.1038/ni.1937..
DOI: 10.1038/ni.1937

Klebe D., McBride D., Flores JJ., Zhang J.H., Tang J. Modulating the Immune Response Towards a Neuroregenerative Peri-injury Milieu After Cerebral Hemorrhage. J Neuroimmune Pharmacol. 2015;10(4):576-586. https://doi.org/10.1007/s11481-015-9613-1..
DOI: 10.1007/s11481-015-9613-1

Hu X., Li P., Guo Y., Wang H., Leak R.K., Chen S. et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke. 2012;43(11): 3063-3070. https://doi.org/10.1161/STROKEAHA.112.659656..
DOI: 10.1161/STROKEAHA.112.659656

Wang S., Zhang H., Xu Y. Crosstalk between microglia and T cells contributes to brain damage and recovery after ischemic stroke. Neurol Res. 2016;38(6):495-503. https://doi.org/10.1080/01616412.2016.1188473..
DOI: 10.1080/01616412.2016.1188473

Narasimhalu K., Lee J., Leong Y.L., Ma L., De Silva D.A., Wong M.C. et al. Inflammatory markers and their association with post stroke cognitive decline. Int J Stroke. 2015;10(4):513-518. https://doi.org/10.1111/ijs.12001..
DOI: 10.1111/ijs.12001

Iadecola C., Buckwalter M.S., Anrather J. Immune responses to stroke: mechanisms, modulation, and therapeutic potential. J Clin Invest. 2020;130(6):2777-2788. https://doi.org/10.1172/JCI135530..
DOI: 10.1172/JCI135530

Doyle K.P., Quach L.N., Sole M., Axtell R.C., Nguyen T.V., Soler-Llavina GJ. et al. B-lymphocyte-mediated delayed cognitive impairment following stroke. J Neurosci. 2015;35(5):2133-2145. https://doi.org/10.1523/JNEUROSCI.4098-14.2015..
DOI: 10.1523/JNEUROSCI.4098-14.2015

Wanner I.B., Anderson MA., Song B., Levine J., Fernandez A., Gray-Thompson Z. et al. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci. 2013;33(31):12870-12886. https://doi.org/10.1523/JNEUROSCI.2121-13.2013..
DOI: 10.1523/JNEUROSCI.2121-13.2013

Wanner I.B., Anderson MA., Song B., Levine J., Fernandez A., Gray-Thompson Z. et al. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci. 2013;33(31):12870-12886. https://doi.org/10.1523/JNEUROSCI.2121-13.2013..
DOI: 10.1523/JNEUROSCI. 2121-13.2013

Quesseveur G., David DJ., Gaillard M.C., Pla P, Wu M.V., Nguyen H.T. et al. BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Transl Psychiatry. 2013;3(4):e253. https://doi.org/10.1038/tp.2013.30..
DOI: 10.1038/tp.2013.30

Wang X., Xuan W., Zhu Z.Y., Li Y., Zhu H., Zhu L. et al. The evolving role of neuro-immune interaction in brain repair after cerebral ischemic stroke. CNS Neurosci Ther. 2018;24(12):1100-1114. https://doi.org/10.1111/cns.13077..
DOI: 10.1111/cns.13077

Qiu Y.M., Zhang C.L., Chen A.Q., Wang H.L., Zhou Y.F., Li Y.N., Hu B. Immune Cells in the BBB Disruption After Acute Ischemic Stroke: Targets for Immune Therapy? Front Immunol. 2021;(12):678744. https://doi.org/10.3389/fimmu.2021.678744..
DOI: 10.3389/fimmu.2021.678744

Ishikawa M., Cooper D., Russell J., Salter J.W., Zhang J.H., Nanda A., Granger D.N. Molecular determinants of the prothrombogenic and inflammatory phenotype assumed by the postischemic cerebral microcirculation. Stroke. 2003;34(7):1777-17782. https://doi.org/10.1161/01.STR.0000074921.17767.F2..
DOI: 10.1161/01.STR.0000074921.17767.F2

Angiari S., Donnarumma T., Rossi B., Dusi S., Pietronigro E., Zenaro E. et al. TIM-1 glycoprotein binds the adhesion receptor P-selectin and mediates T cell trafficking during inflammation and autoimmunity. Immunity. 2014;40(4):542-553. https://doi.org/10.1016/j.immuni.2014.03.004..
DOI: 10.1016/j.immuni.2014.03.004

Zarbock A., Ley K., McEver R.P, Hidalgo A. Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow. Blood. 2011;118(26):6743-6751. https://doi.org/10.1182/blood-2011-07-343566..
DOI: 10.1182/blood-2011-07-343566

Shichita T., Sugiyama Y., Ooboshi H., Sugimori H., Nakagawa R., Takada I. et al. Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med. 2009;15(8):946-950. https://doi.org/10.1038/nm.1999..
DOI: 10.1038/nm.1999

Gelderblom M., Weymar A., Bernreuther C., Velden J., Arunachalam P, Steinbach K. et al. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood. 2012;120(18):3793-3802. https://doi.org/10.1182/blood-2012-02-412726..
DOI: 10.1182/blood-2012-02-412726

Vindegaard N., Munoz-Briones C., El Ali H.H., Kristensen l.K., Rasmussen R.S., Johansen F.F., Hasseldam H. T-cells and macrophages peak weeks after experimental stroke: Spatial and temporal characteristics. Neuropathology 2017;37(5):407-414. https://doi.org/10.1111/neup.12387..
DOI: 10.1111/neup.12387

Miro-Mur F., Urra X., Ruiz-Jaen F., Pedragosa J., Chamorro A., Planas A.M. Antigen-Dependent T Cell Response to Neural Peptides After Human Ischemic Stroke. Front Cell Neurosci. 2020;(14):206. https://doi.org/10.3389/fncel.2020.00206..
DOI: 10.3389/fncel.2020.00206

Gu L., Xiong X., Zhang H., Xu B., Steinberg G.K., Zhao H. Distinctive effects of T cell subsets in neuronal injury induced by cocultured splenocytes in vitro and by in vivo stroke in mice. Stroke. 2012;43(7):1941-1946. https://doi.org/10.1161/STROKEAHA.112.656611..
DOI: 10.1161/STROKEAHA.112.656611

Gu L., Jian Z., Stary C., Xiong X. T Cells and Cerebral Ischemic Stroke. Neurochem Res. 2015;40(9):1786-1791. https://doi.org/10.1007/s11064-015-1676-0..
DOI: 10.1007/s11064-015-1676-0

Wang L., Yao C., Chen J., Ge Y., Wang C., Wang Y. et al. y5 T Cell in Cerebral Ischemic Stroke: Characteristic, Immunity-Inflammatory Role, and Therapy. Front Neurol. 2022;(13):842212. https://doi.org/10.3389/fneur.2022.842212..
DOI: 10.3389/fneur.2022.842212

Hermann D.M., Kleinschnitz C., Gunzer M. Role of polymorphonuclear neutrophils in the reperfused ischemic brain: insights from cell-type-specific immunodepletion and fluorescence microscopy studies. Ther Adv Neurol Disord. 2018;11:1756286418798607. https://doi.org/10.1177/1756286418798607..
DOI: 10.1177/1756286418798607

Ni P, Dong H., Wang Y., Zhou Q., Xu M., Qian Y., Sun J. IL-17A contributes to perioperative neurocognitive disorders through blood-brain barrier disruption in aged mice. J Neuroinflammation. 2018;15(1):332. https://doi.org/10.1186/s12974-018-1374-3..
DOI: 10.1186/s12974-018-1374-3

Zhu F., Wang O., Guo C., Wang X., Cao X., Shi Y. et al. IL-17 induces apoptosis of vascular endothelial cells: a potential mechanism for human acute coronary syndrome. Clin Immunol. 2011;141(2):152-160. https://doi.org/10.1016/j.clim.2011.07.003..
DOI: 10.1016/j.clim.2011.07.003

Clarkson B.D., Ling C., Shi Y., Harris M.G., Rayasam A., Sun D. et al. T cell-derived interleukin (IL)-21 promotes brain injury following stroke in mice. J Exp Med. 2014;211(4):595-604. https://doi.org/10.1084/jem.20131377..
DOI: 10.1084/jem.20131377

Dong Y., Hu C., Huang C., Gao J., Niu W., Wang D. et al. Interleukin-22 Plays a Protective Role by Regulating the JAK2-STAT3 Pathway to Improve Inflammation, Oxidative Stress, and Neuronal Apoptosis following Cerebral Ischemia-Reperfusion Injury. Mediators Inflamm. 2021;2021:6621296. https://doi.org/10.1155/2021/6621296..
DOI: 10.1155/2021/6621296

Gan Y., Liu Q., Wu W., Yin J.X., Bai X.F., Shen R. et al. Ischemic neurons recruit natural killer cells that accelerate brain infarction. Proc Natl Acad Sci USA. 2014;111(7):2704-2709. https://doi.org/10.1073/pnas.1315943111..
DOI: 10.1073/pnas.1315943111

Liu Q., Jin W.N., Liu Y., Shi K., Sun H., Zhang F. et al. Brain Ischemia Suppresses Immunity in the Periphery and Brain via Different Neurogenic Innervations. Immunity 2017;46(3):474-487. https://doi.org/10.1016/j.immuni.2017.02.015..
DOI: 10.1016/j.immuni.2017.02.015

Voskoboinik I., Whisstock J.C., Trapani J.A. Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol. 2015;15(6):388-400. https://doi.org/10.1038/nri3839..
DOI: 10.1038/nri3839

Chu H.X., Kim H.A., Lee S., Moore J.P., Chan C.T., Vinh A. et al. Immune cell infiltration in malignant middle cerebral artery infarction: comparison with transient cerebral ischemia. J Cereb Blood Flow Metab. 2014;34(3):450-459. https://doi.org/10.1038/jcbfm.2013.217..
DOI: 10.1038/jcbfm.2013.217

Chaitanya G.V., Eeka P., Munker R., Alexander J.S., Babu P.P. Role of cytotoxic protease granzyme-b in neuronal degeneration during human stroke. Brain Pathol. 2011;21(1):16-30. https://doi.org/10.1111/j.1750-3639.2010.00426.x..
DOI: 10.1111/j.1750-3639.2010.00426.x

Liesz A., Hu X., Kleinschnitz C., Offner H. Functional role of regulatory lymphocytes in stroke: facts and controversies. Stroke. 2015;46(5):1422-1430. https://doi.org/10.1161/STROKEAHA.114.008608..
DOI: 10.1161/STROKEAHA.114.008608

Khantakova J.N., Bulygin A.S., Sennikov S.V. The Regulatory-T-Cell Memory Phenotype: What We Know. Cells. 2022;11(10):1687. https://doi.org/10.3390/cells11101687..
DOI: 10.3390/cells11101687

Jayaraj R.L., Azimullah S., Beiram R., Jalal F.Y., Rosenberg G.A. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation. 2019;16(1):142. https://doi.org/10.1186/s12974-019-1516-2..
DOI: 10.1186/s12974-019-1516-2

Liesz A., Zhou W., Na S.Y., Hammerling GJ., Garbi N., Karcher S. et al. Boosting regulatory T cells limits neuroinflammation in permanent cortical stroke. J Neurosci. 2013;33(44):17350-17362. https://doi.org/10.1523/JNEUROSCI.4901-12.2013..
DOI: 10.1523/JNEUROSCI.4901-12.2013

Protti G.G., Gagliardi RJ., Forte W.C., Sprovieri S.R. Interleukin-10 may protect against progressing injury during the acute phase of ischemic stroke. Arq Neuropsiquiatr. 2013;71(11):846-851. https://doi.org/10.1590/0004-282X20130168..
DOI: 10.1590/0004-282X20130168

Ooboshi H., Ibayashi S., Shichita T., Kumai Y, Takada J., Ago T. et al. Postischemic gene transfer of interleukin-10 protects against both focal and global brain ischemia. Circulation. 2005;111(7):913-919. https://doi.org/10.1161/01.CIR.0000155622.68580.DC..
DOI: 10.1161/01.CIR.0000155622.68580.DC

Xie L., Choudhury G.R., Winters A., Yang S.H., Jin K. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. Eur J Immunol. 2015;45(1):180-191. https://doi.org/10.1002/eji.201444823..
DOI: 10.1002/eji.201444823

Ramiro L., Simats A., Garcia-Berrocoso T., Montaner J. Inflammatory molecules might become both biomarkers and therapeutic targets for stroke management. Ther Adv Neurol Disord. 2018;11:1756286418789340. https://doi.org/10.1177/1756286418789340..
DOI: 10.1177/1756286418789340

Maida C.D., Norrito R.L., Daidone M., Tuttolomondo A., Pinto A. Neuroinflammatory Mechanisms in Ischemic Stroke: Focus on Cardioembolic Stroke, Background, and Therapeutic Approaches. Int J Mol Sci. 2020;21(18):6454. https://doi.org/10.3390/ijms21186454..
DOI: 10.3390/ijms21186454

Monson N.L., Ortega S.B., Ireland SJ., Meeuwissen AJ., Chen D., Plautz EJ. et al. Repetitive hypoxic preconditioning induces an immunosuppressed B cell phenotype during endogenous protection from stroke. J Neuroinflammation. 2014;(11):22. https://doi.org/10.1186/1742-2094-11-22..
DOI: 10.1186/1742-2094-11-22

Esen N., Rainey-Barger E.K., Huber A.K., Blakely P.K., Irani D.N. Type-I interferons suppress microglial production of the lymphoid chemokine, CXCL13. Glia. 2014;62(9):1452-1462. httpsv7doi.org/10.1002/glia.22692.

Pitzalis C., Jones G.W., Bombardieri M., Jones S.A. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat Rev Immunol. 2014;14(7):447-462. https://doi.org/10.1038/nri3700.
DOI: 10.1038/nri3700

Doyle K.P., Buckwalter M.S. Does B lymphocyte-mediated autoimmunity contribute to post-stroke dementia? Brain Behav Immun. 2017;(64):1-8. https://doi.org/10.1016/j.bbi.2016.08.009..
DOI: 10.1016/j.bbi.2016.08.009

Kim E., Cho S. CNS and peripheral immunity in cerebral ischemia: partition and interaction. Exp Neurol. 2021;(335):113508. https://doi.org/10.1016/j.expneurol.2020.113508..
DOI: 10.1016/j.expneurol.2020.113508

Seifert H.A., Vandenbark AA., Offner H. Regulatory B cells in experimental stroke. Immunology. 2018;154(2):169-177. https://doi.org/10.1111/imm.12887..
DOI: 10.1111/imm.12887

Дополнительная информация
Язык текста: Русский
ISSN: 2079-701X
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4e432d4d4544534f5645542d41525449434c452d323032332d302d332d302d382d3136/