Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
Главная / Результаты поиска
СтатьяИскать документыПерейти к записи. 2023; № 5: 90–97. DOI:10.21518/ms2023-087
Коррекция метаболической дисфункции как метод восстановления функции репродуктивной системы у женщин
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Аффилированные организации
[1]Искать документыПерейти к записи
Аннотация
Инсулинорезистентность является основным патогенетическим компонентом многих метаболических заболеваний, включая ожирение, сахарный диабет 2-го типа, гестационный сахарный диабет, а также синдром поликистозных яичников (СПКЯ). Несмотря на то что на сегодняшний день механизмы формирования инсулинорезистентности не установлены, одним из перспективных направлений в настоящее время является поиск потенциальных терапевтических стратегий для ее коррекции, ввиду того, что это также улучшает течение сопутствующего основного заболевания. Инсулиносенситайзеры являются общепризнанным методом терапии СПКЯ по причине своей безопасности и эффективности в отношении нормализации метаболического и эндокринного профиля пациенток с синдромом поликистозных яичников. Ведущую позицию в этом направлении занимает комбинация мио-инозитола (МИ) с D-хиро-инозитолом (ДХИ) в соотношении 40:1, являющаяся, согласно проведенным исследованиям, сопоставимой с концентрацией инозитолов в плазме крови здоровых женщин. Такое соотношение МИ/ДХИ является эффективным как для нормализации метаболического профиля, так и  для регуляции менструального цикла и преодоления ановуляторного бесплодия. Анализ литературы показал, что ряд биологически активных веществ, таких как фолиевая кислота, витамин D и альфа-липоевая кислота, в сочетании с инсулиносенситайзерами обладает дополнительными преимуществами, что дает основания для продолжения исследований в отношении их значимости как компонентов комбинированного лечения, а также в поиске оптимальной дозы и продолжительности такой терапии.
Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Puttabyatappa M., Sargis R.M., Padmanabhan V. Developmental programming of insulin resistance: are androgens the culprits? J Endocrinol. 2020;245(3):R23–R48. https://doi.org/10.1530/JOE-20-0044..
DOI: 10.1530/JOE-20-0044

Lee S.H., Park S.Y., Choi C.S. Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes Metab J. 2022;46(1):15–37. https://doi.org/10.4093/dmj.2021.0280..
DOI: 10.4093/dmj.2021.0280

Olatunbosun S.T., Griffing G.T. Insulin Resistance. Medscape. 2017. Available at: https://emedicine.medscape.com/article/122501-overview.https://emedicine.medscape.com/article/122501-overview

Olatunbosun S.T., Griffing G.T. Insulin Resistance. Medscape. 2017. Available at: https://emedicine.medscape.com/article/122501-overview.https://emedicine.medscape.com/article/122501-overview

Laganà A.S., Vitale S.G., Noventa M., Vitagliano A. Current management of polycystic ovary syndrome: from bench to bedside. Int J Endocrinol. 2018;2018:7234543. https://doi.org/10.1155/2018/7234543..
DOI: 10.1155/2018/7234543

He F.F., Li Y.M. Role of gut microbiota in the development of insulin resistance and the mechanism underlying polycystic ovary syndrome: a review. J Ovarian Res. 2020;13:73. https://doi.org/10.1186/s13048-020-00670-3..
DOI: 10.1186/s13048-020-00670-3

Xu Y., Qiao J. Association of Insulin Resistance and Elevated Androgen Levels with Polycystic Ovarian Syndrome (PCOS): A Review of Literature. J Healthc Eng. 2022;2022:9240569. https://doi.org/10.1155/2022/9240569..
DOI: 10.1155/2022/9240569

Azziz R. Polycystic ovary syndrome, reproductive endocrinology and infertility. Obstet Gynecol. 2018;132(2):321–336. https://doi.org/10.1097/AOG.0000000000002698..
DOI: 10.1097/AOG.0000000000002698

Azziz R., Carmina E., Chen Z., Dunaif A., Laven J.S., Legro R.S., Lizneva D. et al. Polycystic ovary syndrome. Nat Rev Dis Primers. 2016;2:16057. https://doi.org/10.1038/nrdp.2016.57..
DOI: 10.1038/nrdp.2016.57

Carmina E., Longo R.A., Rini G.B., Lobo R.A. Phenotypic variation in hyperandrogenic women influences the finding of abnormal metabolic and cardiovascular risk parameters. J Clin Endocrinol Metab. 2005;90:2545–2549. https://doi.org/10.1210/jc.2004-2279..
DOI: 10.1210/jc.2004-2279

Carmina E., Nasrallah M.P., Guastella E., Lobo R.A. Characterization of metabolic changes in the phenotypes of women with polycystic ovary syndrome in a large Mediterranean population from Sicily. Clin Endocrinol. 2019;91:553–560. https://doi.org/10.1111/cen.14063..
DOI: 10.1111/cen.14063

Moghetti P., Tosi F., Bonin C., Di Sarra D., Fiers T., Kaufman J.M., Giagulli V.A. et al. Divergences in insulin resistance between the different phenotypes of the polycystic ovary syndrome. J Clin Endocrinol Metab. 2013;98(4):E628–E637. https://doi.org/10.1210/jc.2012-3908..
DOI: 10.1210/jc.2012-3908

Dapas M., Lin F.T.J., Nadkarni G.N., Sisk R., Legro R.S., Urbanek M., Hayes M.G., Dunaif A. Distinct subtypes of polycystic ovary syndrome with novel genetic associations: An unsupervised, phenotypic clustering analysis. PLoS Med. 2020;17(6):e1003132. https://doi.org/10.1371/journal.pmed.1003132..
DOI: 10.1371/journal.pmed.1003132

Vrbikova J., Hill M., Bendlova B., Grimmichova T., Dvorakova K., Vondra K. et al. Incretin levels in polycystic ovary syndrome. Eur J Endocrinol. 2008;159(2):121–127. https://doi.org/10.1530/EJE-08-0097..
DOI: 10.1530/EJE-08-0097

Willis D.S., Watson H., Mason H.D., Galea R., Brincat M., Franks S. Premature response to luteinizing hormone of Granulosa cells from Anovulatory women with polycystic ovary syndrome: relevance to mechanism of Anovulation. J Clin Endocrinol Metab. 1998;83(11):3984–3991. https://doi.org/10.1210/jcem.83.11.5232..
DOI: 10.1210/jcem.83.11.5232

Dumesic D.A., Oberfield S.E., Stener-Victorin E., Marshall J.C., Laven J.S., Legro R.S. Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome. Endocr Rev. 2015;36(5):487–525. https://doi.org/10.1210/er.2015-1018..
DOI: 10.1210/er.2015-1018

Чернуха Г.Е., Мирошина Е.Д., Кузнецов С.Ю., Иванов И.А. Индекс массы тела, композиционный состав тела и метаболический профиль пациенток с синдромом поликистозных яичников. Акушерство и гинекология. 2021;(10):103–111. https://doi.org/10.18565/aig.2021.10.103-111..
DOI: 10.18565/aig.2021.10.103-111

Lee S.H., Park S.A., Ko S.H., Yim H.W., Ahn Y.B., Yoon K.H., Cha B.Y. Insulin resistance and inflammation may have an additional role in the link between cystatin C and cardiovascular disease in type 2 diabetes mellitus patients. Metabolism. 2010;59(2):241–246. https://doi.org/10.1016/j.metabol.2009.07.019..
DOI: 10.1016/j.metabol.2009.07.019

Kelly C.C.J., Lyall H., Petrie J.R., Gould G.W., Connell J.M.C., Sattar N. Low grade chronic inflammation in women with polycystic ovarian syndrome. J Clin Endocrinol Metab. 2001;86:2453–2455. https://doi.org/10.1210/jcem.86.6.7580..
DOI: 10.1210/jcem.86.6.7580

Aboeldalyl S., James C., Seyam E., Ibrahim E.M., Shawki H.E., Amer S. The Role of Chronic Inflammation in Polycystic Ovarian Syndrome-A Systematic Review and Meta-Analysis. Int J Mol Sci. 2021;22(5):2734. https://doi.org/10.3390/ijms22052734..
DOI: 10.3390/ijms22052734

Teede H., Misso M., Costello M., Dokras A., Laven J., Moran L. et al. International evidence-¬based guideline for the assessment and management of polycystic ovary syndrome 2018. Melbourne, Australia: Monash University; 2018. 198 p. Available at: https://www.monash.edu/__data/assets/pdf_file/0004/1412644/PCOS_Evidence-Based-Guidelines_20181009.pdf.https://www.monash.edu/__data/assets/pdf_file/0004/1412644/PCOS_Evidence-Based-Guidelines_20181009.pdf

Teede H., Misso M., Costello M., Dokras A., Laven J., Moran L. et al. International evidence-¬based guideline for the assessment and management of polycystic ovary syndrome 2018. Melbourne, Australia: Monash University; 2018. 198 p. Available at: https://www.monash.edu/__data/assets/pdf_file/0004/1412644/PCOS_Evidence-Based-Guidelines_20181009.pdf.https://www.monash.edu/__data/assets/pdf_

Dietz de Loos A., Jiskoot G., Beerthuizen A., Busschbach J., Laven J. Metabolic health during a randomized controlled lifestyle intervention in women with PCOS. Eur J Endocrinol. 2021;186(1):53–64. https://doi.org/10.1530/EJE-21-0669..
DOI: 10.1530/EJE-21-0669

Wharton S., Lau D.C.W., Vallis M., Sharma A.M., Biertho L., CampbellScherer D., Adamo K. Obesity in adults: a clinical practice guideline. CMAJ. 2020;192(31):E875–E891. https://doi.org/10.1503/cmaj.191707..
DOI: 10.1503/cmaj.191707

Napolitano A., Miller S., Nicholls A.W., Baker D., Van Horn S., Thomas E., Rajpal D. et al. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS ONE. 2014;9(7):e100778. https://doi.org/10.1371/journal.pone.0100778..
DOI: 10.1371/journal.pone.0100778

Zhao H., Xing C., Zhang J., He B. Comparative efficacy of oral insulin sensitizers metformin, thiazolidinediones, inositol, and berberine in improving endocrine and metabolic profiles in women with PCOS: a network meta-analysis. Reprod Health. 2021;18(1):171. https://doi.org/10.1186/s12978-021-01207-7..
DOI: 10.1186/s12978-021-01207-7

Murthy P.P. Structure and nomenclature of inositol phosphates, phosphoinositides, and glycosylphosphatidylinositols. Subcell Biochem. 2006;39:1–19. https://doi.org/10.1007/0-387-27600-9_1..
DOI: 10.1007/0-387-27600-9_1

Milewska E.M., Czyzyk A., Meczekalski B., Genazzani A.D. Inositol and human reproduction. From cellular metabolism to clinical use. Gynecol Endocrinol. 2016;32(9):690–695. https://doi.org/10.1080/09513590.2016.1188282..
DOI: 10.1080/09513590.2016.1188282

Ijuin T., Takenawa T. Regulation of insulin signaling and glucose transporter 4 (GLUT4) exocytosis by phosphatidylinositol 3,4,5-trisphosphate (PIP3) phosphatase, skeletal muscle, and kidney enriched inositol polyphosphate phosphatase (SKIP). J Biol Chem. 2012;287:6991–6999. https://doi.org/10.1074/jbc.M111.335539..
DOI: 10.1074/jbc.M111.335539

Nestler J.E., Unfer V. Reflections on inositol(s) for PCOS therapy: Steps toward success. Gynecol Endocrinol. 2015;31:501–505. https://doi.org/10.3 109/09513590.2015.1054802..
DOI: 10.3 109/09513590.2015.1054802

Sun T.H., Heimark D.B., Nguygen T., Nadler J.L., Larner J. Both myo-inositol to chiro-inositol epimerase activities and chiro-inositol to myo-inositol ratios are decreased in tissues of GK type 2 diabetic rats compared to Wistar controls. Biochem Biophys Res Commun. 2002;293:1092–1098. https://doi.org/10.1016/S0006-291X(02)00313-3..
DOI: 10.1016/S0006-291X(02)00313-3

Fan C., Liang W., Wei M., Gou X., Han S., Bai J. Effects of D-Chiro-Inositol on Glucose Metabolism in db/db Mice and the Associated Underlying Mechanisms. Front Pharmacol. 2020;11:354. https://doi.org/10.3389/fphar.2020.00354..
DOI: 10.3389/fphar.2020.00354

Yap A., Nishiumi S., Yoshida K., Ashida H. Rat L6 myotubes as an in vitro model system to study GLUT4-dependent glucose uptake stimulated by inositol derivatives. Cytotechnology. 2007;55:103–108. https://doi.org/10.1007/s10616-007-9107-y..
DOI: 10.1007/s10616-007-9107-y

Heimark D., McAllister J., Larner J. Decreased myo-inositol to chiroinositol (M/C) ratios and increased M/C epimerase activity in PCOS theca cells demonstrate increased insulin sensitivity compared to controls. Endocr J. 2014;61:111–117. https://doi.org/10.1507/endocrj.EJ13-0423.
DOI: 10.1507/endocrj.EJ13-0423

Larner J., Huang L.C., Tang G., Suzuki S., Schwartz C.F., Romero G. et al. Insulin mediators: structure and formation. Cold Spring Harb Symp Quant Biol. 1988;53(Pt. 2):965–971. https://doi.org/10.1101/SQB.1988.053.01.111..
DOI: 10.1101/SQB.1988.053.01.111

Cabrera-Cruz H., Oróstica L., Plaza-Parrochia F., Torres-Pinto I., Romero C., Vega M. The insulin-sensitizing mechanism of myo-inositol is associated with AMPK activation and GLUT-4 expression in human endometrial cells exposed to a PCOS environment. Am J Physiol Endocrinol Metab. 2020;318:E237–E248. https://doi.org/10.1152/ajpendo.00162.2019..
DOI: 10.1152/ajpendo.00162.2019

Kennington A.S., Hill C.R., Craig J., Bogardus C., Raz I., Ortmeyer H.K., Hansen B.C., Romero G., Larner J. Low urinary chiro-inositol excretion in non-insulin-dependent diabetes mellitus. N Engl J Med. 1990;323:373–378. https://doi.org/10.1056/NEJM199008093230603..
DOI: 10.1056/NEJM199008093230603

Carlomagno G., Unfer V., Roseff S. The D-chiro-inositol paradox in the ovary. Fertil Steril. 2011;95:2515–2516. https://doi.org/10.1016/j.fertnstert.2011.05.027..
DOI: 10.1016/j.fertnstert.2011.05.027

Unfer V., Carlomagno G., Papaleo E., Vailati S., Candiani M., Baillargeon J.P. Hyperinsulinemia Alters Myoinositol to d-chiroinositol Ratio in the Follicular Fluid of Patients With PCOS. Reprod Sci. 2014;21:854–858. https://doi.org/10.1177/1933719113518985..
DOI: 10.1177/1933719113518985

Cheang K.I., Baillargeon J.P., Essah P.A., Ostlund R.E. Jr., Apridonize T., Islam L., Nestler J.E. Insulin-stimulated release of D-chiro-inositolcontaining inositolphosphoglycan mediator correlates with insulin sensitivity in women with polycystic ovary syndrome. Metabolism. 2008;57(10):1390–1397. https://doi.org/10.1016/j.metabol.2008.05.008..
DOI: 10.1016/j.metabol.2008.05.008

Isabella R., Raffone E. CONCERN: Does ovary need D-chiro-inositol? J Ovarian Res. 2012;5(1):14. https://doi.org/10.1186/1757-2215-5-14..
DOI: 10.1186/1757-2215-5-14

Gateva A., Unfer V., Kamenov Z. The use of inositol(s) isomers in the management of polycystic ovary syndrome: a comprehensive review. Gynecol Endocrinol. 2018;34(7):545–550. https://doi.org/10.1080/09513590.2017.1421632..
DOI: 10.1080/09513590.2017.1421632

Facchinetti F., Dante G., Dante I. The ratio of MI to DCI and its impact in the treatment of polycystic ovary syndrome: experimental and literature evidences. ISGE Series. 2016;3:103–109. https://doi.org/10.1007/978-3-319-23865-4_13..
DOI: 10.1007/978-3-319-23865-4_13

Bevilacqua A., Dragotto J., Giuliani A., Bizzarri M. Myo-inositol and D-chiroinositol (40:1) reverse histological and functional features of polycystic ovary syndrome in a mouse model. J Cell Physiol. 2019;234(6):9387–9398. https://doi.org/10.1002/jcp.27623..
DOI: 10.1002/jcp.27623

Gilling-Smith C., Willis D.S., Beard R.W., Franks S. Hypersecretion of androstenedione by isolated thecal cells from polycystic ovaries. J Clin Endocrinol Metab. 1994;79(4):1158–1165. https://doi.org/10.1210/jcem.79.4.7962289..
DOI: 10.1210/jcem.79.4.7962289

Nordio M., Basciani S., Camajani E. The 40:1 myo-inositol/D-chiro-inositol plasma ratio is able to restore ovulation in PCOS patients: comparison with other ratios. Eur Rev Med Pharmacol Sci. 2019;23(12):5512–5521. https://doi.org/10.26355/eurrev_201906_18223..
DOI: 10.26355/eurrev_201906_18223

Thalamati, S. A comparative study of combination of Myo-inositol and D-chiro-inositol versus Metformin in the management of polycystic ovary syndrome in obese women with infertility. Int J Reprod Contracept Obstet Gynecol. 2019;8(3):825. https://doi.org/10.18203/2320-1770.ijrcog20190498..
DOI: 10.18203/2320-1770.ijrcog20190498

Le Donne M., Metro D., Alibrandi A., Papa M., Benvenga S. Effects of three treatment modalities (diet, myoinositol or myoinositol associated with D-chiro-inositol) on clinical and body composition outcomes in women with polycystic ovary syndrome. Eur Rev Med Pharmacol Sci. 2019;23(5):2293–2301. https://doi.org/10.26355/eurrev_201903_17278..
DOI: 10.26355/eurrev_201903_17278

Tagliaferri V., Romualdi D., Immediata V., De Cicco S., Di Florio C., Lanzone A., Guido M. Metformin vs myoinositol: Which is better in obese polycystic ovary syndrome patients? A randomized controlled crossover study. Clin Endocrinol. 2017;86:725–730. https://doi.org/10.1111/cen.13304..
DOI: 10.1111/cen.13304

Greff D., Juhász A.E., Váncsa S., Váradi A., Sipos Z., Szinte J., Park S. Inositol is an effective and safe treatment in polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled trials. Reprod Biol Endocrinol. 2023;21(1):10. https://doi.org/10.1186/s12958-023-01055-z..
DOI: 10.1186/s12958-023-01055-z

Fruzzetti F., Perini D., Russo M., Bucci F., Gadducci A. Comparison of two insulin sensitizers, metformin and myo-inositol, in women with polycystic ovary syndrome (PCOS). Gynecol Endocrinol. 2017;33(1):39–42. https://doi.org/10.1080/09513590.2016.1236078..
DOI: 10.1080/09513590.2016.1236078

Facchinetti F., Orrù B., Grandi G., Unfer V. Short-term effects of metformin and myo-inositol in women with polycystic ovarian syndrome (PCOS): a meta-analysis of randomized clinical trials. Gynecol Endocrinol. 2019;35(3):198–206. https://doi.org/10.1080/09513590.2018.1540578..
DOI: 10.1080/09513590.2018.1540578

Advani K., Batra M., Tajpuriya S., Gupta R., Saraswat A., Nagar H.D., Makwana L. et al. Efficacy of combination therapy of inositols, antioxidants and vitamins in obese and non-obese women with polycystic ovary syndrome: An observational study. J Obstet Gynaecol. 2020;40:96–101. https://doi.org/10.1080/01443615.2019.1604644..
DOI: 10.1080/01443615.2019.1604644

Радзинский В.Е. (ред.). Прегравидарная подготовка: клинический протокол. М.: StatusPraesens; 2016. 80 с. Режим доступа: https://rpc03.ru/wp-content/uploads/2016/09/Pregravidarnaja-podgotovka.compressed.pdf.https://rpc03.ru/wp-content/uploads/2016/09/Pregravidarnaja-podgotovka.compressed.pdf

Радзинский В.Е. (ред.). Прегравидарная подготовка: клинический протокол. М.: StatusPraesens; 2016. 80 с. Режим доступа: https://rpc03.ru/wp-content/uploads/2016/09/Pregravidarnaja-podgotovka.compressed.pdf.https://rpc03.ru/wp-content/uploads/2016/09/Pregravidarnaja-podgotovka.compressed.pdf

Twigt J.M., Hammiche F., Sinclair K.D. Preconception folic acid use modulates estradiol and follicular responses to ovarian stimulation. J Clin Endocrinol Metab. 2011;96(2):E322-E329. https://doi.org/10.1210/jc.2010-1282..
DOI: 10.1210/jc.2010-1282

Li D., Liu H.-X., Fang Y.-Y., Huo J.-N., Wu Q.-J., Wang T.-R., Ma X.-X. Hyperhomocysteinemia in polycystic ovary syndrome: decreased betainehomocysteine methyltransferase and cystathionine β-synthase-mediated homocysteine metabolism. Reproductive BioMedicine Online. 2018;37(2):234–241. https://doi.org/10.1016/j.rbmo.2018.05.008..
DOI: 10.1016/j.rbmo.2018.05.008

Kalyanaraman R., Pal L. A Narrative Review of Current Understanding of the Pathophysiology of Polycystic Ovary Syndrome: Focus on Plausible Relevance of Vitamin D. Int J Mol Sci. 2021;22(9):4905. https://doi.org/10.3390/ijms22094905..
DOI: 10.3390/ijms22094905

Dravecká I., Figurová J., Javorský M., Petríková J., Vaľková M., Lazúrová I. The effect of alfacalcidiol and metformin on phenotype manifestations in women with polycystic ovary syndrome – a preliminary study. Physiol Res. 2016;65(5):815–822. https://doi.org/10.33549/physiolres.933266..
DOI: 10.33549/physiolres.933266

Tehrani H.G., Mostajeran F., Shahsavari S. The effect of calcium and vitamin D supplementation on menstrual cycle, body mass index and hyperandrogenism state of women with polycystic ovarian syndrome. J Res Med Sci. 2014;19:875–880. Available at: https://pubmed.ncbi.nlm.nih.gov/25535503.https://pubmed.ncbi.nlm.nih.gov/25535503

Tehrani H.G., Mostajeran F., Shahsavari S. The effect of calcium and vitamin D supplementation on menstrual cycle, body mass index and hyperandrogenism state of women with polycystic ovarian syndrome. J Res Med Sci. 2014;19:875–880. Available at: https://pubmed.ncbi.nlm.nih.gov/25535503.https://pubmed.ncbi.nlm.nih.gov/25535503

Menichini D., Facchinetti F. Effects of vitamin D supplementation in women with polycystic ovary syndrome: A review. Gynecol Endocrinol. 2020;36:1–5. https://doi.org/10.1080/09513590.2019.1625881..
DOI: 10.1080/09513590.2019.1625881

Guo S., Tal R., Jiang H., Yuan T., Liu Y. Vitamin D Supplementation Ameliorates Metabolic Dysfunction in Patients with PCOS: A Systematic Review of RCTs and Insight into the Underlying Mechanism. Int J Endocrinol. 2020;2020:7850816. https://doi.org/10.1155/2020/7850816..
DOI: 10.1155/2020/7850816

Genazzani A.D., Prati A., Marchini F., Petrillo T., Napolitano A., Simoncini T. Differential insulin response to oral glucose tolerance test (OGTT) in overweight/obese polycystic ovary syndrome patients undergoing to myo-inositol (MYO), alpha lipoic acid (ALA), or combination of both. Gynecological Endocrinology. 2019;1:6. https://doi.org/10.1080/09513590.2019.1640200..
DOI: 10.1080/09513590.2019.1640200

Lee W.J., Song K.H., Koh E.H., Won J.C., Kim H.S., Park H.S. et al. Alpha-lipoic acid increases insulin sensitivity by activating AMPK in skeletal muscle. Biochem Biophys Res Commun. 2005;332:885–891. https://doi.org/10.1016/j.bbrc.2005.05.035..
DOI: 10.1016/j.bbrc.2005.05.035

Shen Q.W., Zhu M.J., Tong J., Ren J., Du M. Ca2+/calmodulin-dependent protein kinase kinase is involved in AMP-activated protein kinase activation by alpha-lipoic acid in C2C12 myotubes. Am J Physiol Cell Physiol. 2007;293(4):1395–1403. https://doi.org/10.1152/ajpcell.00115.2007..
DOI: 10.1152/ajpcell.00115.2007

Дополнительная информация
Язык текста: Русский
ISSN: 2079-701X
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4e432d4d4544534f5645542d41525449434c452d323032332d302d352d302d39302d3937/