Puttabyatappa M., Sargis R.M., Padmanabhan V. Developmental programming of insulin resistance: are androgens the culprits? J Endocrinol. 2020;245(3):R23–R48. https://doi.org/10.1530/JOE-20-0044..
DOI: 10.1530/JOE-20-0044
Lee S.H., Park S.Y., Choi C.S. Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes Metab J. 2022;46(1):15–37. https://doi.org/10.4093/dmj.2021.0280..
DOI: 10.4093/dmj.2021.0280
Olatunbosun S.T., Griffing G.T. Insulin Resistance. Medscape. 2017. Available at: https://emedicine.medscape.com/article/122501-overview.https://emedicine.medscape.com/article/122501-overview
Olatunbosun S.T., Griffing G.T. Insulin Resistance. Medscape. 2017. Available at: https://emedicine.medscape.com/article/122501-overview.https://emedicine.medscape.com/article/122501-overview
Laganà A.S., Vitale S.G., Noventa M., Vitagliano A. Current management of polycystic ovary syndrome: from bench to bedside. Int J Endocrinol. 2018;2018:7234543. https://doi.org/10.1155/2018/7234543..
DOI: 10.1155/2018/7234543
He F.F., Li Y.M. Role of gut microbiota in the development of insulin resistance and the mechanism underlying polycystic ovary syndrome: a review. J Ovarian Res. 2020;13:73. https://doi.org/10.1186/s13048-020-00670-3..
DOI: 10.1186/s13048-020-00670-3
Xu Y., Qiao J. Association of Insulin Resistance and Elevated Androgen Levels with Polycystic Ovarian Syndrome (PCOS): A Review of Literature. J Healthc Eng. 2022;2022:9240569. https://doi.org/10.1155/2022/9240569..
DOI: 10.1155/2022/9240569
Azziz R. Polycystic ovary syndrome, reproductive endocrinology and infertility. Obstet Gynecol. 2018;132(2):321–336. https://doi.org/10.1097/AOG.0000000000002698..
DOI: 10.1097/AOG.0000000000002698
Azziz R., Carmina E., Chen Z., Dunaif A., Laven J.S., Legro R.S., Lizneva D. et al. Polycystic ovary syndrome. Nat Rev Dis Primers. 2016;2:16057. https://doi.org/10.1038/nrdp.2016.57..
DOI: 10.1038/nrdp.2016.57
Carmina E., Longo R.A., Rini G.B., Lobo R.A. Phenotypic variation in hyperandrogenic women influences the finding of abnormal metabolic and cardiovascular risk parameters. J Clin Endocrinol Metab. 2005;90:2545–2549. https://doi.org/10.1210/jc.2004-2279..
DOI: 10.1210/jc.2004-2279
Carmina E., Nasrallah M.P., Guastella E., Lobo R.A. Characterization of metabolic changes in the phenotypes of women with polycystic ovary syndrome in a large Mediterranean population from Sicily. Clin Endocrinol. 2019;91:553–560. https://doi.org/10.1111/cen.14063..
DOI: 10.1111/cen.14063
Moghetti P., Tosi F., Bonin C., Di Sarra D., Fiers T., Kaufman J.M., Giagulli V.A. et al. Divergences in insulin resistance between the different phenotypes of the polycystic ovary syndrome. J Clin Endocrinol Metab. 2013;98(4):E628–E637. https://doi.org/10.1210/jc.2012-3908..
DOI: 10.1210/jc.2012-3908
Dapas M., Lin F.T.J., Nadkarni G.N., Sisk R., Legro R.S., Urbanek M., Hayes M.G., Dunaif A. Distinct subtypes of polycystic ovary syndrome with novel genetic associations: An unsupervised, phenotypic clustering analysis. PLoS Med. 2020;17(6):e1003132. https://doi.org/10.1371/journal.pmed.1003132..
DOI: 10.1371/journal.pmed.1003132
Vrbikova J., Hill M., Bendlova B., Grimmichova T., Dvorakova K., Vondra K. et al. Incretin levels in polycystic ovary syndrome. Eur J Endocrinol. 2008;159(2):121–127. https://doi.org/10.1530/EJE-08-0097..
DOI: 10.1530/EJE-08-0097
Willis D.S., Watson H., Mason H.D., Galea R., Brincat M., Franks S. Premature response to luteinizing hormone of Granulosa cells from Anovulatory women with polycystic ovary syndrome: relevance to mechanism of Anovulation. J Clin Endocrinol Metab. 1998;83(11):3984–3991. https://doi.org/10.1210/jcem.83.11.5232..
DOI: 10.1210/jcem.83.11.5232
Dumesic D.A., Oberfield S.E., Stener-Victorin E., Marshall J.C., Laven J.S., Legro R.S. Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome. Endocr Rev. 2015;36(5):487–525. https://doi.org/10.1210/er.2015-1018..
DOI: 10.1210/er.2015-1018
Чернуха Г.Е., Мирошина Е.Д., Кузнецов С.Ю., Иванов И.А. Индекс массы тела, композиционный состав тела и метаболический профиль пациенток с синдромом поликистозных яичников. Акушерство и гинекология. 2021;(10):103–111. https://doi.org/10.18565/aig.2021.10.103-111..
DOI: 10.18565/aig.2021.10.103-111
Lee S.H., Park S.A., Ko S.H., Yim H.W., Ahn Y.B., Yoon K.H., Cha B.Y. Insulin resistance and inflammation may have an additional role in the link between cystatin C and cardiovascular disease in type 2 diabetes mellitus patients. Metabolism. 2010;59(2):241–246. https://doi.org/10.1016/j.metabol.2009.07.019..
DOI: 10.1016/j.metabol.2009.07.019
Kelly C.C.J., Lyall H., Petrie J.R., Gould G.W., Connell J.M.C., Sattar N. Low grade chronic inflammation in women with polycystic ovarian syndrome. J Clin Endocrinol Metab. 2001;86:2453–2455. https://doi.org/10.1210/jcem.86.6.7580..
DOI: 10.1210/jcem.86.6.7580
Aboeldalyl S., James C., Seyam E., Ibrahim E.M., Shawki H.E., Amer S. The Role of Chronic Inflammation in Polycystic Ovarian Syndrome-A Systematic Review and Meta-Analysis. Int J Mol Sci. 2021;22(5):2734. https://doi.org/10.3390/ijms22052734..
DOI: 10.3390/ijms22052734
Teede H., Misso M., Costello M., Dokras A., Laven J., Moran L. et al. International evidence-¬based guideline for the assessment and management of polycystic ovary syndrome 2018. Melbourne, Australia: Monash University; 2018. 198 p. Available at: https://www.monash.edu/__data/assets/pdf_file/0004/1412644/PCOS_Evidence-Based-Guidelines_20181009.pdf.https://www.monash.edu/__data/assets/pdf_file/0004/1412644/PCOS_Evidence-Based-Guidelines_20181009.pdf
Teede H., Misso M., Costello M., Dokras A., Laven J., Moran L. et al. International evidence-¬based guideline for the assessment and management of polycystic ovary syndrome 2018. Melbourne, Australia: Monash University; 2018. 198 p. Available at: https://www.monash.edu/__data/assets/pdf_file/0004/1412644/PCOS_Evidence-Based-Guidelines_20181009.pdf.https://www.monash.edu/__data/assets/pdf_
Dietz de Loos A., Jiskoot G., Beerthuizen A., Busschbach J., Laven J. Metabolic health during a randomized controlled lifestyle intervention in women with PCOS. Eur J Endocrinol. 2021;186(1):53–64. https://doi.org/10.1530/EJE-21-0669..
DOI: 10.1530/EJE-21-0669
Wharton S., Lau D.C.W., Vallis M., Sharma A.M., Biertho L., CampbellScherer D., Adamo K. Obesity in adults: a clinical practice guideline. CMAJ. 2020;192(31):E875–E891. https://doi.org/10.1503/cmaj.191707..
DOI: 10.1503/cmaj.191707
Napolitano A., Miller S., Nicholls A.W., Baker D., Van Horn S., Thomas E., Rajpal D. et al. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS ONE. 2014;9(7):e100778. https://doi.org/10.1371/journal.pone.0100778..
DOI: 10.1371/journal.pone.0100778
Zhao H., Xing C., Zhang J., He B. Comparative efficacy of oral insulin sensitizers metformin, thiazolidinediones, inositol, and berberine in improving endocrine and metabolic profiles in women with PCOS: a network meta-analysis. Reprod Health. 2021;18(1):171. https://doi.org/10.1186/s12978-021-01207-7..
DOI: 10.1186/s12978-021-01207-7
Murthy P.P. Structure and nomenclature of inositol phosphates, phosphoinositides, and glycosylphosphatidylinositols. Subcell Biochem. 2006;39:1–19. https://doi.org/10.1007/0-387-27600-9_1..
DOI: 10.1007/0-387-27600-9_1
Milewska E.M., Czyzyk A., Meczekalski B., Genazzani A.D. Inositol and human reproduction. From cellular metabolism to clinical use. Gynecol Endocrinol. 2016;32(9):690–695. https://doi.org/10.1080/09513590.2016.1188282..
DOI: 10.1080/09513590.2016.1188282
Ijuin T., Takenawa T. Regulation of insulin signaling and glucose transporter 4 (GLUT4) exocytosis by phosphatidylinositol 3,4,5-trisphosphate (PIP3) phosphatase, skeletal muscle, and kidney enriched inositol polyphosphate phosphatase (SKIP). J Biol Chem. 2012;287:6991–6999. https://doi.org/10.1074/jbc.M111.335539..
DOI: 10.1074/jbc.M111.335539
Nestler J.E., Unfer V. Reflections on inositol(s) for PCOS therapy: Steps toward success. Gynecol Endocrinol. 2015;31:501–505. https://doi.org/10.3 109/09513590.2015.1054802..
DOI: 10.3 109/09513590.2015.1054802
Sun T.H., Heimark D.B., Nguygen T., Nadler J.L., Larner J. Both myo-inositol to chiro-inositol epimerase activities and chiro-inositol to myo-inositol ratios are decreased in tissues of GK type 2 diabetic rats compared to Wistar controls. Biochem Biophys Res Commun. 2002;293:1092–1098. https://doi.org/10.1016/S0006-291X(02)00313-3..
DOI: 10.1016/S0006-291X(02)00313-3
Fan C., Liang W., Wei M., Gou X., Han S., Bai J. Effects of D-Chiro-Inositol on Glucose Metabolism in db/db Mice and the Associated Underlying Mechanisms. Front Pharmacol. 2020;11:354. https://doi.org/10.3389/fphar.2020.00354..
DOI: 10.3389/fphar.2020.00354
Yap A., Nishiumi S., Yoshida K., Ashida H. Rat L6 myotubes as an in vitro model system to study GLUT4-dependent glucose uptake stimulated by inositol derivatives. Cytotechnology. 2007;55:103–108. https://doi.org/10.1007/s10616-007-9107-y..
DOI: 10.1007/s10616-007-9107-y
Heimark D., McAllister J., Larner J. Decreased myo-inositol to chiroinositol (M/C) ratios and increased M/C epimerase activity in PCOS theca cells demonstrate increased insulin sensitivity compared to controls. Endocr J. 2014;61:111–117. https://doi.org/10.1507/endocrj.EJ13-0423.
DOI: 10.1507/endocrj.EJ13-0423
Larner J., Huang L.C., Tang G., Suzuki S., Schwartz C.F., Romero G. et al. Insulin mediators: structure and formation. Cold Spring Harb Symp Quant Biol. 1988;53(Pt. 2):965–971. https://doi.org/10.1101/SQB.1988.053.01.111..
DOI: 10.1101/SQB.1988.053.01.111
Cabrera-Cruz H., Oróstica L., Plaza-Parrochia F., Torres-Pinto I., Romero C., Vega M. The insulin-sensitizing mechanism of myo-inositol is associated with AMPK activation and GLUT-4 expression in human endometrial cells exposed to a PCOS environment. Am J Physiol Endocrinol Metab. 2020;318:E237–E248. https://doi.org/10.1152/ajpendo.00162.2019..
DOI: 10.1152/ajpendo.00162.2019
Kennington A.S., Hill C.R., Craig J., Bogardus C., Raz I., Ortmeyer H.K., Hansen B.C., Romero G., Larner J. Low urinary chiro-inositol excretion in non-insulin-dependent diabetes mellitus. N Engl J Med. 1990;323:373–378. https://doi.org/10.1056/NEJM199008093230603..
DOI: 10.1056/NEJM199008093230603
Carlomagno G., Unfer V., Roseff S. The D-chiro-inositol paradox in the ovary. Fertil Steril. 2011;95:2515–2516. https://doi.org/10.1016/j.fertnstert.2011.05.027..
DOI: 10.1016/j.fertnstert.2011.05.027
Unfer V., Carlomagno G., Papaleo E., Vailati S., Candiani M., Baillargeon J.P. Hyperinsulinemia Alters Myoinositol to d-chiroinositol Ratio in the Follicular Fluid of Patients With PCOS. Reprod Sci. 2014;21:854–858. https://doi.org/10.1177/1933719113518985..
DOI: 10.1177/1933719113518985
Cheang K.I., Baillargeon J.P., Essah P.A., Ostlund R.E. Jr., Apridonize T., Islam L., Nestler J.E. Insulin-stimulated release of D-chiro-inositolcontaining inositolphosphoglycan mediator correlates with insulin sensitivity in women with polycystic ovary syndrome. Metabolism. 2008;57(10):1390–1397. https://doi.org/10.1016/j.metabol.2008.05.008..
DOI: 10.1016/j.metabol.2008.05.008
Isabella R., Raffone E. CONCERN: Does ovary need D-chiro-inositol? J Ovarian Res. 2012;5(1):14. https://doi.org/10.1186/1757-2215-5-14..
DOI: 10.1186/1757-2215-5-14
Gateva A., Unfer V., Kamenov Z. The use of inositol(s) isomers in the management of polycystic ovary syndrome: a comprehensive review. Gynecol Endocrinol. 2018;34(7):545–550. https://doi.org/10.1080/09513590.2017.1421632..
DOI: 10.1080/09513590.2017.1421632
Facchinetti F., Dante G., Dante I. The ratio of MI to DCI and its impact in the treatment of polycystic ovary syndrome: experimental and literature evidences. ISGE Series. 2016;3:103–109. https://doi.org/10.1007/978-3-319-23865-4_13..
DOI: 10.1007/978-3-319-23865-4_13
Bevilacqua A., Dragotto J., Giuliani A., Bizzarri M. Myo-inositol and D-chiroinositol (40:1) reverse histological and functional features of polycystic ovary syndrome in a mouse model. J Cell Physiol. 2019;234(6):9387–9398. https://doi.org/10.1002/jcp.27623..
DOI: 10.1002/jcp.27623
Gilling-Smith C., Willis D.S., Beard R.W., Franks S. Hypersecretion of androstenedione by isolated thecal cells from polycystic ovaries. J Clin Endocrinol Metab. 1994;79(4):1158–1165. https://doi.org/10.1210/jcem.79.4.7962289..
DOI: 10.1210/jcem.79.4.7962289
Nordio M., Basciani S., Camajani E. The 40:1 myo-inositol/D-chiro-inositol plasma ratio is able to restore ovulation in PCOS patients: comparison with other ratios. Eur Rev Med Pharmacol Sci. 2019;23(12):5512–5521. https://doi.org/10.26355/eurrev_201906_18223..
DOI: 10.26355/eurrev_201906_18223
Thalamati, S. A comparative study of combination of Myo-inositol and D-chiro-inositol versus Metformin in the management of polycystic ovary syndrome in obese women with infertility. Int J Reprod Contracept Obstet Gynecol. 2019;8(3):825. https://doi.org/10.18203/2320-1770.ijrcog20190498..
DOI: 10.18203/2320-1770.ijrcog20190498
Le Donne M., Metro D., Alibrandi A., Papa M., Benvenga S. Effects of three treatment modalities (diet, myoinositol or myoinositol associated with D-chiro-inositol) on clinical and body composition outcomes in women with polycystic ovary syndrome. Eur Rev Med Pharmacol Sci. 2019;23(5):2293–2301. https://doi.org/10.26355/eurrev_201903_17278..
DOI: 10.26355/eurrev_201903_17278
Tagliaferri V., Romualdi D., Immediata V., De Cicco S., Di Florio C., Lanzone A., Guido M. Metformin vs myoinositol: Which is better in obese polycystic ovary syndrome patients? A randomized controlled crossover study. Clin Endocrinol. 2017;86:725–730. https://doi.org/10.1111/cen.13304..
DOI: 10.1111/cen.13304
Greff D., Juhász A.E., Váncsa S., Váradi A., Sipos Z., Szinte J., Park S. Inositol is an effective and safe treatment in polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled trials. Reprod Biol Endocrinol. 2023;21(1):10. https://doi.org/10.1186/s12958-023-01055-z..
DOI: 10.1186/s12958-023-01055-z
Fruzzetti F., Perini D., Russo M., Bucci F., Gadducci A. Comparison of two insulin sensitizers, metformin and myo-inositol, in women with polycystic ovary syndrome (PCOS). Gynecol Endocrinol. 2017;33(1):39–42. https://doi.org/10.1080/09513590.2016.1236078..
DOI: 10.1080/09513590.2016.1236078
Facchinetti F., Orrù B., Grandi G., Unfer V. Short-term effects of metformin and myo-inositol in women with polycystic ovarian syndrome (PCOS): a meta-analysis of randomized clinical trials. Gynecol Endocrinol. 2019;35(3):198–206. https://doi.org/10.1080/09513590.2018.1540578..
DOI: 10.1080/09513590.2018.1540578
Advani K., Batra M., Tajpuriya S., Gupta R., Saraswat A., Nagar H.D., Makwana L. et al. Efficacy of combination therapy of inositols, antioxidants and vitamins in obese and non-obese women with polycystic ovary syndrome: An observational study. J Obstet Gynaecol. 2020;40:96–101. https://doi.org/10.1080/01443615.2019.1604644..
DOI: 10.1080/01443615.2019.1604644
Радзинский В.Е. (ред.). Прегравидарная подготовка: клинический протокол. М.: StatusPraesens; 2016. 80 с. Режим доступа: https://rpc03.ru/wp-content/uploads/2016/09/Pregravidarnaja-podgotovka.compressed.pdf.https://rpc03.ru/wp-content/uploads/2016/09/Pregravidarnaja-podgotovka.compressed.pdf
Радзинский В.Е. (ред.). Прегравидарная подготовка: клинический протокол. М.: StatusPraesens; 2016. 80 с. Режим доступа: https://rpc03.ru/wp-content/uploads/2016/09/Pregravidarnaja-podgotovka.compressed.pdf.https://rpc03.ru/wp-content/uploads/2016/09/Pregravidarnaja-podgotovka.compressed.pdf
Twigt J.M., Hammiche F., Sinclair K.D. Preconception folic acid use modulates estradiol and follicular responses to ovarian stimulation. J Clin Endocrinol Metab. 2011;96(2):E322-E329. https://doi.org/10.1210/jc.2010-1282..
DOI: 10.1210/jc.2010-1282
Li D., Liu H.-X., Fang Y.-Y., Huo J.-N., Wu Q.-J., Wang T.-R., Ma X.-X. Hyperhomocysteinemia in polycystic ovary syndrome: decreased betainehomocysteine methyltransferase and cystathionine β-synthase-mediated homocysteine metabolism. Reproductive BioMedicine Online. 2018;37(2):234–241. https://doi.org/10.1016/j.rbmo.2018.05.008..
DOI: 10.1016/j.rbmo.2018.05.008
Kalyanaraman R., Pal L. A Narrative Review of Current Understanding of the Pathophysiology of Polycystic Ovary Syndrome: Focus on Plausible Relevance of Vitamin D. Int J Mol Sci. 2021;22(9):4905. https://doi.org/10.3390/ijms22094905..
DOI: 10.3390/ijms22094905
Dravecká I., Figurová J., Javorský M., Petríková J., Vaľková M., Lazúrová I. The effect of alfacalcidiol and metformin on phenotype manifestations in women with polycystic ovary syndrome – a preliminary study. Physiol Res. 2016;65(5):815–822. https://doi.org/10.33549/physiolres.933266..
DOI: 10.33549/physiolres.933266
Tehrani H.G., Mostajeran F., Shahsavari S. The effect of calcium and vitamin D supplementation on menstrual cycle, body mass index and hyperandrogenism state of women with polycystic ovarian syndrome. J Res Med Sci. 2014;19:875–880. Available at: https://pubmed.ncbi.nlm.nih.gov/25535503.https://pubmed.ncbi.nlm.nih.gov/25535503
Tehrani H.G., Mostajeran F., Shahsavari S. The effect of calcium and vitamin D supplementation on menstrual cycle, body mass index and hyperandrogenism state of women with polycystic ovarian syndrome. J Res Med Sci. 2014;19:875–880. Available at: https://pubmed.ncbi.nlm.nih.gov/25535503.https://pubmed.ncbi.nlm.nih.gov/25535503
Menichini D., Facchinetti F. Effects of vitamin D supplementation in women with polycystic ovary syndrome: A review. Gynecol Endocrinol. 2020;36:1–5. https://doi.org/10.1080/09513590.2019.1625881..
DOI: 10.1080/09513590.2019.1625881
Guo S., Tal R., Jiang H., Yuan T., Liu Y. Vitamin D Supplementation Ameliorates Metabolic Dysfunction in Patients with PCOS: A Systematic Review of RCTs and Insight into the Underlying Mechanism. Int J Endocrinol. 2020;2020:7850816. https://doi.org/10.1155/2020/7850816..
DOI: 10.1155/2020/7850816
Genazzani A.D., Prati A., Marchini F., Petrillo T., Napolitano A., Simoncini T. Differential insulin response to oral glucose tolerance test (OGTT) in overweight/obese polycystic ovary syndrome patients undergoing to myo-inositol (MYO), alpha lipoic acid (ALA), or combination of both. Gynecological Endocrinology. 2019;1:6. https://doi.org/10.1080/09513590.2019.1640200..
DOI: 10.1080/09513590.2019.1640200
Lee W.J., Song K.H., Koh E.H., Won J.C., Kim H.S., Park H.S. et al. Alpha-lipoic acid increases insulin sensitivity by activating AMPK in skeletal muscle. Biochem Biophys Res Commun. 2005;332:885–891. https://doi.org/10.1016/j.bbrc.2005.05.035..
DOI: 10.1016/j.bbrc.2005.05.035
Shen Q.W., Zhu M.J., Tong J., Ren J., Du M. Ca2+/calmodulin-dependent protein kinase kinase is involved in AMP-activated protein kinase activation by alpha-lipoic acid in C2C12 myotubes. Am J Physiol Cell Physiol. 2007;293(4):1395–1403. https://doi.org/10.1152/ajpcell.00115.2007..
DOI: 10.1152/ajpcell.00115.2007